Synthesis of 2,3-, 2,5-, and 2,6-Disubstituted-Benzobarrelenes High Temperature Bromination II

Metin Balci*,a, Osman Çakmaka and Tuncer Hökelekbc

^aDepartment of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey ^bHacettepe University, Faculty of Engineering, Department of Physics, Ankara, Turkey

(Received in UK 4 February 1992)

Abstract: Bromination of 2-bromo-1,4-dihydro-1,4-ethenonaphthalene (7) at -0 °C has been found to give five rearranged tribromides 8, 9, 10, 11, and 12 via Wagner-Meerwein rearrangement with accompanying aryl and alkyl migration. It has been shown that the endo tribromides 9 and 11 are secondary products formed by bromine-catalyzed reaction of the corresponding exo tribromides. The bromination of 7 at 78 °C resulted in the formation of the non-rearranged products 21, 22, 23, and 24 with bicyclo-[2.2.2]skeleton. The structure of 8, 10, 11 and 21 have been determined by X-ray structural analysis. The dehydrobromination of the tribromides 21, 22, 23, and 24 with potassium tert-butoxide provided the corresponding benzobarrelenes 2a, 3a, and 4a in high yield. Reaction of dibromobenzobarrelenes with CuCN resulted in the formation of dicyano derivatives 2b, 3b, and 3b. Reaction of 3a with BuLi and subsequent quenching wih MeI afforded dimethyl derivative 3c.

Introduction

The effect of substituents on the course of the di- π -methane rearrangement¹ of bicyclic compounds has been investigated in detail by Paquette and Bender². Benzobarrelene **1** is an intriguing compound in view of the di- π -methane rearrangement. The symmetry of the parent hydrocarbon **1** ensures that there are two possible bridging modes. However, monosubstitution in a vinyl location increases the bridging-modes from two to six di- π -methane rearrangement. In view of this aspect substituted benzobarrelene derivatives are important compounds which can provide information about which bridging will be preferred and how the substituents will influence the reaction modes. For this reason, we were interested in the synthesis of mono-, di-, and trisubstituted benzobarrelene derivatives. Recently, we developed a

c) Author to whom inquires concerning the X-ray structure should be directed.

synthetic methodology leading to mono-³ and 2,3-disubstituted⁴ benzobarrelenes based on rearrangement of benzo[3.2.1]octene system into benzo- [2.2.2]octene systems. This rearrangement was performed by electrophilic addition of bromine to the double bond of benzo [3.2.1]octene system.

In a continuation of our investigation of the electrophilic addition of bromine to bicyclic systems, we report on the addition of bromine to 2-bromobenzobarrelene 7 and synthesis of 2,3-, 2,5-, and 2-6-disubstituted benzobarrelenes (2,3, and 4)⁵ that have potential importance to explore the effect of the different substituent in the same molecule, on the course of the di- π -methane rearrangement.

Results and Discussion

For the synthesis of 2,3-dibromobenzobarrelene⁴ 2a we submitted 5 to bromination. We have observed that the product distribution in the bromination reaction of 5 is dependent strongly on the reaction temperature. Therefore, we studied the bromination of 5 at different temperatures and found out that the bromination in dichloromethane solution at -20 °C, led to 6 in quantitative yield. The double dehydrobromination of 6 was achieved by using potassium *tert*-butoxide (Scheme 1). For the synthesis of 3 and 4 we used 2-bromobenzobarrelene 7 as the starting material. Addition of bromine to the unsubstituted double bond in 7 giving unrearranged products, followed by HBr elimination should give a mixture of 3a and 4a. For this

reason we reacted 7 with bromine at 0 °C. The starting material 7 was prepared by our published method^{3a} starting from benzonorbornadiene and was subjected in pentane at 0 °C to bromination. The ¹H-NMR studies revealed that the reaction mixture was very complex and consisted of five products. The reaction mixture was crystallized from pentane and we isolated as the major product 8 in a yield of 58 %. The rest was subjected to repeated column chromatography and we isolated 4 additional products 9, 10, 11, and 12 in a yield of 19, 3, 6, and 9 %, respectively (Scheme II). The structure of the products has been elucidated on the basis of spectral data obtained by ¹H-NMR (400 MHz), and ¹³C-NMR experiments. We don't intend to discuss all the spectra separately, but, we wish to discuss only ¹H-NMR spectrum of

the compound **10**. The aromatic protons resonate at δ 7.15-7.39 as multiplet. The olefinic proton gives rise to triplets of doublet. The doublet splitting (J = 7.0 Hz) originates from the bridge head proton H₅ and triplet splittings from the allylic proton H₂ and bridge proton H₈, respectively. Bridge proton H₈ is resonating at 4.69 as doublets of triplet. Bridgehead protons appear at 3.98 as doublet (H₁) and at 3.71 as doublets of doublet (H₅). The proton adjacent to bromine gives rise to a triplet at 4.62 ppm. Generally, the exo-configuration of the bromine at C₈ in 8, 9, **10**, and **11** was determined on the basis of coupling constants between bridge proton H₈ and bridgehead protons H₁ and H₅. As a consequence of the rigid geometries and reliability of the Karplus rule⁶ in bicyclo-[3.2.1]octane systems⁷, the dihedral relationship of the C-5-H (C-1-H) bond to an endo- (20⁰) to an exo-proton (90⁰) are sufficiently distinctive to be releaved by the magnitude of the spin-spin interactions. Thus, the high value of the J_{18} and J_{58} in 8, 9, 10, and 11 (J = 4.0, 4.2 Hz) is uniquely accomodated by the exo-orientation. (endo-configuration of bromine) of H₈. The configuration of the bromine at C₄ (8 and 9) and C₂ (in 10 and 11) was also determined from coupling constants J₄₅ (in 8 and 9) and J₁₂ (in 10 and 11), respectively. We observe a large coupling constant (J = 4.6 and J = 5.0 Hz for 9 and 11) in the case of endo-orientation of bromine and a small coupling for exo-orientation (J = 1.2 and J < 0.7 Hz for 8 and 10). Finally, X-ray structure analysis of 8, 10⁸, and 11 (Figure 1 and Figure 2) confirmed these structural findings. Among the compounds we isolated an alkyl shift product 12 whose ¹H-NMR and ¹³C-NMR were completely in agreement with the proposed structure.

Figure 1. X- Ray Crystal Structure of 8.

Figure 2. X- Ray Crystal Structure of 11.

Structural determination of these compounds have revealed that the desired nonrearranged products were not formed even in traces which could be precursors for 3 and 4. For the formation of the rearranged products we proposed following reaction mechanism. Product analysis indicates clearly that bromine has added only to the unsubstituted double bond in 7. It is known that the bromine decreases the reactivity of the double bond towards electrophiles. Therefore it is not suprising that we have isolated only products arising from addition of bromine to the unsubstituted double bond. The bromine atoms bonded at bridge carbon (C_8) in all four isomers 8, 9, 10, and 11 have the endo-configuration. It is evident from the bromine configuration at bridge carbon that initial attack by the bromine has occured from exo-face of the π system. Most reasonably the driving force of this mode of addition is supplied by the formation of an aryl bridged intermediate. Since the exo-attack intermediate 13 is unsymmetrical, there are two possible aryl shifts involving aryl bonds "a" and "b". The fact that 8 was formed as the major product indicates that the shift of the aryl bond "a" is predominating which can be explained in turns of mesomeric effect of the bromine atom which increases the stability of the cation 14 over 15 (Scheme III).

The formation of the alkyl shift product 12 can be explained in terms of the formation of the endo-intermediate 16 formed by endo attack of bromine to 7 (scheme IV). The determined endo-configuration of the bromine atom at the bridge carbon is also in agreement with the endo-attack. This intermediate is also unsymmetrical as in the case of 13. Therefore one should also expect isomeric alkyl-shift products. But we were not able to isolate any other products beside 12 arising from alkyl-shift.

Scheme IV

From the aryl shifts involving the aryl bonds "a" and "b" we isolated stereo isomers 8/9 and 10/ 11. Recently, Smith et al.⁹ and we^{3a,b} have shown the formation of only one stereo isomer by addition of bromine to bicyclic systems. For example, the bromination of 5,8-diacetoxy-1,4dihydro-1,4- ethanonaphthalene 17 has been found to give only one product 18 (Scheme V).

Scheme V

Therefore, we should obtain by this bromination reaction the exo-isomers 8 and 10, according to the formation mechanism, not the isomers 9 and 11. In the light of these results we believe that the isomers 9 and 11 are secondary products. Recently, we have discovered that the configuration isomerization of bromine¹⁰ in the bicyclo[3.2.1]system can be catalyzed by molecular bromine. Treatment of a solution of the pure exo dibromide 19 with bromine in day light for 10 min. resulted in the formation of a equilibrium mixture consisting from exo and endo dibromides 19 and 20 (86:14) (Scheme VI). In analogy to this reaction we reacted the exobromide 8 with excess bromine and obtained in 45 min. endo tribromide 9 nearly in quantitative yield. Probably steric crowdness in 8 favor the formation of the endo tribromide 9. Therefore, we assume that the formed endo-tribromides 9 and 11 are secondary products formed during bromination reaction.

In the course of studying bromination reaction we noticed that the reaction temperature has a dramatically influence on the product distribution. Increasing of the temperature gives non-rearranged reaction products^{3b,4}. This fact encouraged us to go with the bromination temperature higher in order to trap the nonrearranged bromination products derived from **7**.

For this reason, we submitted 7 to high temperature bromination. To a refluxing solution of 7 in carbon tetrachloride was added a hot solution of bromine in carbon tetrachloride in one portion. The colour of bromine disappeared immediately. After silica gel chromatograpy followed by fractional crystallization we isolated four products 21, 22, 23, and 24 with non-rearranged skeleton. (Scheme VII).

Scheme VII

The NMR spectra of these isomers reveal sufficient information to allow tentative assignments to be made. Resonances of the olefinic protons gave information which of the two double bonds was brominated. Because of the very close structural similarity we were not able to make a clear-cut differentiation between the isomers 21 and 22 on the basis of the spectral parameters¹¹. Therefore, we carried out a X-ray crystal analysis of the isomer 21. After this we assigned the correct structure of 22. The product analysis has indicated that bromine has added to the both double bond in a ratio of approximately 1:1.

Figure 3. X- Ray Crystal Structure of 21.

Bromination reaction at 0 °C was completely regioselective. However, this regioselectivity was lost at high temperature. The formation of both stereo- isomers 21 and 22 (23 and 24) does not give any indication of which of the two competing modes of endo- and exo-attack is preferred, since both isomer pairs can be formed from endo-attack as well as from exo-attack. The different product distribution at 0 °C and 77 °C results from the life-time of the first formed intermediates exo- or endo-bromonium ion 13 and 16. Since we increase the lifetime of these intermediates at 0 °C the rearrangement can take place completely. However, at 77 °C the bromine can attack the intermediates 13 and 16 before rearangement, since the lifetime is decreased. On the other hand, radical intermediates should be also considered by addition of bromine, since these are much less likely to rearrange.

After succesfull synthesis of these desired isomers 21, 22, 23, and 24, the stage was now set for the critical cis-dehydrobromination of 21 and 22. Treatment of a mixture consisting of 21 and 22 (or pure 21 and 22) with potassium tert-butoxide proceeded with abstraction of the cis proton and cis elimination to give 3a and 4a in a ratio of 1:1 (80 %) which was separated by fractional crystallization (Scheme VIII).

Structural assignments to **3a** and **4a** were achieved by means of proton and carbon NMR data. The ¹H- and ¹³C-NMR spectra of **3a** were highly symmetrical according to the symmetry in the molecule. The ¹H-NMR spectrum consists of an AA'BB' system (aromatic protons) and a doublets of doublet arising from the bridgehead and double bond protons. A six-line ¹³C-NMR spectrum is in good agreement with the proposed structure. The spectral data of **4a** are straigtforward for this structure. Especially a ten-line ¹³C-NMR spectrum sports strongly the unsymmetrical structure. Dehydrobromination of a mixture consisting of **23**, and **24** which provides the configurational requirements for a trans dehydrobromination, provided **2a** in high yield (98%) (Scheme VIII). With the completion of the synthesis of our target molecules **2a**, **3a**, and **4a** we opened up an entry to the other and at different position disubstituted benzobarrelene derivatives.

Scheme IX

At first we set out to determine if **3a** could be effectively dimetalated. When this dibromide was treated at -78 °C with an excess of n-butyllithium followed by methyliodine, dimethyl derivative **3b** was produced. **2a**, **3a**, and **4a** were heated with cuprous cyanide in dimethylformamide (DMF) at 130°C for several hours. The vinylic bromine atom was replaced in high yield (Scheme IX).

Experimental Section

General: Melting points were determined on a Thomas-Hoover capillary melting point apparatus. Solvents were concentrated at reduced pressure. Infrared spectra were obtained from films on NaCl plates for liquids or from solution in 0.1 mm cells or KBr pellets for solids on a Perkin-Elmer 337 Infrared recording spectrophotometer. The ¹H-NMR spectra were recorded on an EM 360 Varian, Brucker WM 300, 360 and 400 MHz spectrometer and are reported in δ units with (CH₃)₄Si as internal standard. Apparent splittings are given in all cases. Mass spectra were recorded on a Finnigan-MAT MS Model 4000 mass spectrometer at an ionizing voltage 70 eV. All column chromatography was performed on silica gel (60-mesh, Merck). TLC was carried out on Merck 0.2 mm silica gel 60 F₂₅₄ analytical alumina plates.

Bromination of 2-Bromo-5,6-benzobicyclo[2.2.2]octa-2,5,7-triene 7 at 0 $^{\circ}$ C. To a solution of 1.1 g (4.72 mmol) of 2-bromo benzobarrelene in 5 mL of chloroform was added 50 mL of pentane and cooled to 0 $^{\circ}$ C. To the resulting solution was added a solution of 760 mg (4.74 mmol) of bromine in 15 mL of pentane dropwise during 10 min. The solvent was removed under reduced pressure. The residue was crystallized from CH₂Cl₂/pentane (1:1) to give the exo-dibromide 8 (800 mg 46%).

exo,exo-2,4,8-Tribromo-6,7-benzobicyclo[3.2.1]octa-2,6-diene 8. Colorless clusters, mp 155-156 $^{\text{OC}}$, ¹H NMR (60 MHz, CDCl₃) δ 7.0-7.5 (m, 4H, aryl), 5.85 (dt, J₁₃ = J₃₅=

1.2 Hz, $J_{34} = 3.8$ Hz, 1H, H_3), 4.7 (t, $J_{18} = J_{58} = 4.2$ Hz, 1H, H_8), 4.55 (dd, $J_{45} = 1.2$ Hz, 1H₄), 3.7-3.9 (m, 2H, H_1 and H_5); ¹³C NMR (90 MHz, CDCl₃) ppm 146.33, 140.27, 128.44, 128.34, 126.72, 125.31, 124.33, 121.91, 56.27, 49.00, 47.41, 44.76; MS, (m/e, %) 390/392/394/396 (m⁺, 9), 311/313/315 (M-Br, 55), 152/153 (M-2Br. 100); IR (KBr, cm⁻¹) 3060, 2980, 1620, 1410, 1320, 1290, 1240, 1160, 975.

After filtration of the tribromide 8, the organic solvent was evaporated and the oily residue (950 mg) was subjected to silica gel (100 g) chromatography, eluting with petroleum ether. We isolated four products as well as tribromide 8. The first component isolated was identified as 9.

endo,exo-2,4,8-Tribromo-6,7-benzobicyclo[3.2.1]octa-2,6-diene 9. (220 mg, 13 %): mp 97-98 °C, colorless crystals from chloroform-hexane; ¹H NMR (60 MHz, CCl₄) δ 7.0-7.3 (m, 4H, aryl), 5.6 (dt, 1H, H₃), 5.05 (dd, J₄₅ = 4.6 Hz, J₃₄ = 2.8 Hz, 1H, H₄), 4.5 (t, J₁₈ = J₅₈ = 4.2 Hz, 1H, H₈), 3.3-3.6 (m, 2H, H₁ and H₅); ¹³C NMR (90 MHz, CDCl₃) ppm 145.92, 138.49, 128.50, 127.65, 127.42, 125.36, 125.25, 121.59, 55.43, 53.63, 50.48, 47.65; IR (KBr cm⁻¹) 3060, 2960, 1620, 1465, 1320, 1235, 1100, 1150.

The second component proved to be 12

endo,endo-2,7,8-Tribromo-3,4-benzobicyclo[3.2.1]octa-2,6-diene 12. (160 mg, 9 %), colorless needles, mp 111-112 °C from chloroform/hexane; ¹H NMR (60 MHz, CCl₄) δ 6.9-7.7 (m, 4H, aryl), 6.15 (d, J₁₇ = 3.6 Hz, 1H, H₇), 5.65 (d, J₁₂ =5 Hz, 1H, H₂), 4.85 (t, J₁₈ = J₅₈ = 4.5 Hz, 1H, H₈), 3.4 (d, 1H, H₅), 3.3-3.5 (m, 1H, H₁); IR (KBr cm⁻¹) 3020, 2970, 1595, 1480, 1450, 1260, 1230, 1145, 1100, 910.

As the third fraction we isolated the tribromide 10.

exo,exo-2,3,8-Tribromo-6,7-benzobicyclo[3.2.1]octa-3,6-diene 10. (45 mg, 2.5 %); colorless needles, mp 125-126 °C from chloroform/n-hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.39 (m, 4H, aryl), 6.65 (dt, J₄₅ = 7 Hz, 1H, H₄), 4.69 (td, J₁₈ = J₅₈ = 4.2 Hz, 1H, H₈), 4.62 (t, J₁₂ = 0, J₄₂ = 1.2 Hz, H₂), 3.98 (d, H₁), 3.71 (dd, H₅); ¹³C NMR (100 MHz, CDCl₃) ppm 147.61, 139.82, 135.61, 128.28, 127.96, 124.63, 121.86, 120.29, 51.69, 50.51, 48.95, 46.42. MS(m/e, %) 390/392/394/396 (M⁺, 8), 311/313/315 (M-Br, 50), 152/153 (M-3Br, 100); IR (KBr, cm⁻¹) 3060, 3040, 1610, 1465, 1330, 1280, 1235, 970.

As the last fraction we isolated the tribromide 11.

endo,exo-2,3,8-Tribromo-6,7-benzobicyclo[3.2.1]octa-3,6-diene 11. (70 mg, 4%) colorless crystals from chloroform/hexane, mp 147-148 °C; ¹H NMR (60 MHz, CDCl₃) δ 7.0-7.5 (m, 4H, aryl) 6.5 (d, J₄₅ = 7 Hz, 1H, H₄), 5.15 (d, J₁₂ = 5 Hz, 1H, H₂), 4.5 (t, J₁₈ = J₅₈ = 4.0 Hz, 1H, H₈), 3.3-3.8 (m, H₁ and H₅); ¹³C NMR (90 MHz, CDCl₃) ppm 146.68, 138.67, 134.52, 128.41, 127.66, 127.03, 121.49, 120.74, 53.65, 53.30, 48.36; MS (m/e, %) 390/392/394/396 (M⁺, 7), 311/313/315 (M-Br, 52), 152-153 (M-3Br, 100); IR (KBr, cm⁻¹) 3060,

2990, 1610, 1470, 1460, 1240, 1210, 1170, 1150, 970.

Bromine-catalyzed Configuration Isomerization of exo-tribromide 8. To a solution of 30 mg (0.076 mmol) exo-tribromide 8 in 0.5 mL of CDCl₃ in a NMR tube was added 80 mg (0.5 mmol) bromine at room temperature. After 45 min ¹H NMR has revealed the configuration isomerization and the formation of 9 in quantitative yield.

Bromination of 2-Bromo-6,7-benzobicyclo[2.2.2]octa-2,6-diene 7 at 77 $^{\circ}$ C. 2-Bromobenzobarrelene 7 (1.2 g, 5.15 mmol) was dissolved in 40 mL of CCl₄ in a 100 mL flask which was equipped with reflux condenser. The solution was heated until carbon tetrachloride started to reflux while stirring magnetically. To the refluxing solution was added a hot solution (65-70 $^{\circ}$ C) of bromine (830 mg, 5.19 mmol) in 20 mL of carbon tetrachloride in one portion. The colour of bromine disappeared immediately. After being cooled to room temperature the solvent was evaporated. The oily residue was chromatographed on silica gel (170 g) eluting with hexane. The first component isolated was identified as 22.

endo,exo-2,5,6-Tribromo-6,7-benzotricyclo[2.2.2]octa-2,6-diene 22. (280 mg, 14 %); colorless needles, mp 50-51 $^{\circ}$ C from chloroform/n-hexane); ¹H NMR (200 MHz, CDCl₃) δ 7.16-7.47 (m, 4H, aryl), 6.74 (dd, J₃₄ = 6.35 Hz, J₁₃ = 1.9 Hz, 1H, H₃), 4.43 (t, 1H, H₅), 4.22 (dd, J₄₆ = 2.7 Hz, 1H, H₄), 4.16 (t, 1H, H₁), 3.99 (t, J₅₆ = J₁₆ = 2.85 Hz, 1H, H₆); ¹³C NMR (50 MHz, CDCl₃) ppm 138.41, 136.97, 133.38, 127.51, 126.91, 126.42, 124.16, 123.73, 58.11, 54.42, 53.55, 50.73; MS (m/e, %) 390/392/394/396 (M⁺, 6), 311/313/315 (M-Br, 17); (KBr, cm⁻¹) 3070, 3020, 2990, 1610, 1470, 1460, 1280, 1220, 1170, 1100. Anal. Calcd for C₁₂H₉Br₃: C, 36.71; H, 2.31; Br, 60.98. Found: C, 36.54; H, 2.27.

As second fraction we isolated the tribromide 21.

exo,endo-2,5,6-Tribromo-6,7-benzotricyclo[2.2.2]octa-2,6-diene 21. (360 mg, 18%); colorless needles, mp 127-128 °C from chloroform/n-hexane); ¹H NMR (60 MHz, CCi₄) δ 7.25 (s, 4H, aryl), 6.7 (dd, J₃₄ = 6.8 Hz, J₁₃ = 2.4 Hz, 1H, H₃), 4.33 (t, J₆₄ = J₆₅ = 2.6 Hz, 1H, H₆), 4.23 (t, 1H, H₅) 3.97 (t, 1H, H₁); MS (m/e, %) 390/392/394/396 (M⁺, 8), 311/313/315 (M-Br); IR (KBr, cm⁻¹) 3000, , 2990, 1600, 1475, 1460, 1330, 1290, 1170, 1105. 980, 970.

The third component proved to be 23.

exo-2,2,3-Tribromo-5,6-benzotricyclo[2.2.2]octe-2,6-diene 23. (200 mg, 10 %); mp 80-81 ^oC colorless needles from chloroform/n-hexane); ¹H NMR (60 MHz, CCl₄) δ 7.0-7.35 (m, 4H, aryl), 6.67 (m, 2H, H₅ and H₆), 4.78 (dd, J₁₆ = 3.5 Hz, J₁₅ = 2.5 Hz, 1H, H₁), 4.61 (d, J₃₄ = 2.0 Hz, 1H, H₃) 4.24 (m, 1H, H₄); IR (KBr, cm⁻¹), 2990, 1600, 1550, 1475, 1460, 1290, 1170, 970. Calcd for C₁₂H₉Br₃: C, 36.71; H, 2.31; Br, 60.98. Found: C, 36.48; H, 2.38.

Lastly, endo tribromide 24 was isolated.

endo-2,2,3-Tribromo-5,6-benzotricyclo[2.2.2]octa-2,6-diene 24. (460 mg, 23 %); mp 109-110 °C colorless needles from chloroform/ri-hexane); ¹H NMR (200 MHz, CDCl₃) δ 7.24-7.3 (m, 4H, aryl), 6.67 (m, 2H, H₅ and H₆), 4.96 (d, J₃₄ = 2.4 Hz, 1H, H₃), 4.84 (dd, J₁₆ = 4.7 Hz, J₁₅ = 2.4 Hz, 1H, H₁), 4.14 (m, 1H, H₄); ¹³C NMR (50 MHz, CDCl₃) ppm 139.22, 135.72, 135.64, 134.49, 126.95, 126.68, 126.27, 126.02, 66.11, 61.67, 59.69, 50.55; IR (KBr, cm⁻¹), 3060, 2990, 1640, 1550, 1475, 1460, 1250, 1180, 1105, 970. Calcd for C₁₂H₉Br₃: C, 36.71; H, 2.31; Br, 60.98. Found: C, 36.88; H, 2.40.

2,3-Dibromo-5,6-benzobicyclo[**2.2.2**]octa-**2,5,7-triene 2a.** To a solution of 60 mg (0.55 mmol) of sodium methoxide in 15 mL of dry and freshly distilled THF was added a solution of **23** or **24** (393 mg, 1 mmol) in 10 mL of dry THF while stirring magnetically. The resulting reaction mixture was refluxed for 3h. After being cooled to room temperature the solution was poured into a mixture of hexane (40 mL) and water (40 mL). The layers were separated and the aqueous phase was extracted with hexane. The combined organic layers were washed with water (2X40 mL), dried and evaporated to leave a pale yellow oil. The residue was purified by filtration through a short silica gel (5 g) column. Elution with hexane and crystallization from CH₂Cl₂/pentane (2:5) gave dibromobenzobarrelene **2a.** (302 mg, 95 %), mp 71-72 °C, colorless needles; ¹H NMR (400 MHz, CDCl₃) δ 6.96-7.22 (AA'BB' system, 4H, aryl), 6.93 (X-part of AA'XX' system, H₅ and H₆), 4.95 (A-part of AA'XX' system, H₁ and H₄);¹³C NMR (100 MHz, CDCl₃) ppm 144.54, 138.69, 129.41, 124.58, 122.61, 58.56; MS (m/e, %) 310/312/314 (M⁺, 9), 231/233 (M-Br, 6), 152 (M-2Br, 100); IR (KBr, cm⁻¹), 1610, 1460, 1450, 1350, 1310, 1260, 1215, 1185, 1060, 980, 840, 755.

2,5-, and 2,6-Dibromo-7,8-benzobicyclo[2.2.2]octa-2,5,7-triene 4a and 3a. To a solution of 134 mg (1.2 mmol) of potassium tert-butoxide in 15 mL of dry and freshyl distilled THF was added a solution of 21 and 22 (393 mmol, 1mmol, 1:1) in 10 mL of dry THF while stirring magnetically. The resulting reaction mixture was refluxed for 3 h. After being cooled to room temperature, the solution was poured into a mixture of hexane (20 mL) and water (20 mL). The organic phase was washed with water, dried and rotoevaporated. The oily residue was subjected to a short silica gel (5g) column eluting with petroleum ether. The dibromobenzobarrelens 3a and 4a were separated by fractional crystallization. Firstly, 2,6-dibromobenzobarrelene 3a was crystallized from methylene chloride/hexane (1:4) in refrigerator during one day. After filtration of 3a the solvent was evaporated and the oily residue was crystallized from methylene chloride/pentane (1:6) in refrigerator to give 4a.

2,6-Dibromo-7,8-benzobicyclo[2.2.2]octa-2,5,7-triene 3a. (110 mg, 35 %), colorless clusters; mp 172-173 $^{\circ}$ C(from methylene chloride/n-hexane); ¹H NMR (250 MHz, CDCl₃) δ 6.91-7.16 (AA'BB' system, 4H, aryl), 6.83 (dd, J₃₄ = J₁₅= 6.3 Hz, J₄₅ = J₁₃ = 2.4 Hz, 2H, H₃ and H₅), 4.68 (dd, 2H, H₁ and H₄); ¹³C NMR (62.5 MHz, CDCl₃) ppm 144.48, 136.30,

132.44, 124.67, 122.77, 59.20; MS (m/e, %) 310/312/314 (M^+ , 8), 231/233 (M-Br, 9), 206/208 (M-Br, -HC=CH, 3); IR (KBr, cm⁻¹) 3010, , 2980, 1610, 1460, 1450, 1260, 1250, 1240, 1130. Anal. Calcd for C₁₂H₈Br₂: C, 46.23; H, 2.58; Br, 51.22. Found: C, 46.05; H, 2.41.

2,5-Dibromo-7,8-benzoblcyclo[2.2.2]octa-2,5,7-triene 4a. (93 mg, 30 %): colorless needles, mp 101-102 ${}^{O}C($ from methylene chloride/n-hexane); ¹H NMR (250 MHz, CDCl₃) δ 6.94-7.3 (m, 4H, aryl), 6.84 (dd, $J_{34} = J_{64} = 6.27$ Hz, $J_{16} = J_{13} = 2.1$ Hz, 2H, H_3 and H_6), 4.76 (t, $J_{16} = J_{13} = 2.1$ Hz 1H, H_1), 4.76 (t, 1H, H_4); ¹³C NMR (62.5 MHz, CDCl₃) ppm 144.59, 144.40, 136.80, 130.98, 125.12, 124.16, 123.15, 122,39, 51.27, 66.28; IR (KBr, cm⁻¹) 3070, 2980, 1580, 1460, 1450, 1260, 1200, 1190, 1130, 1090, 985. Anal. Calcd for $C_{12}H_8Br_2$: C, 46.23; H, 2.58; Br, 51.22. Found: C, 46.38; H, 2.64.

2,6-Dicyanobenzobarrelene 3b. A solution of 312 mg (1 mmol) of 2,6-dibromobenzobarrelene and 462 mg (2.58 mmol) of cuprous cyanide in 15 mL of dry DMF was stirred under nitrogen at at 130 O C for 10 h. The mixture was cooled, diluted with 200 mL of benzene and extracted with 5 % aqueous FeCl₃ (2X50 mL) then with 5% aqueous NaOH (2x50 mL) and finally with water (2x50 mL). Organic layer was dried (magnesium sulfate) and concentrated in vacuum and the residue was purified by filtration through a short silica gel (5 g) column by eluting with chloroform/hexane (15:85). The residue was crystallized from THF/hexane. Colourless clusters (165 mg, 81%): mp 210-211 O C; ¹H NMR (300 MHz, CDCl₃) δ 7.7-7.8 (dd, J₃₄ = J₁₅= 6.2 Hz, J₄₅ = J₁₃ = 2.0 Hz, 2H, H₃ and H₅), 7.09-7.48 (AA'BB' system, 4H, aryl), 5.23 (dd, 2H, H₁ and H₄); ¹³C NMR (75.0 MHz, CDCl₃) ppm 153.34, 141.43, 125.93, 124.16, 116.05, 51.29; MS (m/e, %) 204 (M⁺, 100), 177 (60), 153 (69), 126 (34); IR (KBr, cm⁻¹) 3080, 2210, 1590, 1470, 1455, 1265, 1215, 1190, 895, 890, 760. Anal. Calcd for C₁₂H₈N₂: C, 82.35; H, 3.95; N, 28.01. Found: C, 82.27; H, 3.81.

The synthesis of 2,5- and 2,3-dicyanobenzobarrelenes was accomplished by the same experimental procedure as described above starting from the corresponding dibromobenzobarrelenes (1 mmol).

2,5-Dicyanobenzobarrelene 4b. (153 mg, 75%): mp 199-201 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.7 (dd, J₆₄ = 6.0 Hz, J₆₁= 1.6 Hz, 2H, H₃ and H₆), 7.09-7.45 (m, 4H, aryl), 5.24 (t, 1H, H₄), 5.21 (t, 1H, H₁); ¹³C NMR (75. MHz, CDCl₃) ppm 153.49, 142.06, 141.05, 126.06, 125.77, 124.91, 124.29, 124.01, 115.44, 52.66, 49.773 MS (m/e, %) 204 (M⁺, 100), 177 (47), 153 (32), 126 (17); IR (KBr, cm⁻¹) 3090, 3080, 3045, 2225, 1590, 1470, 1465, 1455, 1265, 1270, 1130, 885. Anal. Calcd for C₁₂H₈N₂: C, 82.35; H, 3.95; N, 28.01. Found: C, 82.07; H, 4.01.

2,3-Dicyanobenzobarrelene 2b. (346 mg, 85% from 2 mmol **2a**): mp 155-156 $^{\circ}$ C; ¹H NMR (60 MHz, CDCl₃) δ 7.20 (A-part of AA'XX' system, 2H, H₅ and H₆), 6.86 (AA'BB' system,

4H, aryl), 5.10 (X-part of AA'XX' system, 2H, H₁ and H₄); ¹IR (KBr, cm⁻¹) 3080, 3045, 3015, 2220, 1580, 1470, 1305, 1295, 1220, 1200, 1140, 1020. Anal. Calcd for $C_{12}H_8N_2$: C, 82.35; H, 3.95; N, 28.01. Found: C, 82.56; H, 3.72.

2,6-Dimethylbenzobarrelene 3c. To a solution of 2,6-dibromo benzobarrelene of 624 mg (2 mmol) in 15 mL of freshly distilled THF was added a solution of buthyl lithium (2.4 mmol, 3.6 mL) in hexane dropwise under a nitrogen atmosphere at -50 °C. The reaction mixture was stirred for an additional 15 min. At the same temperature was added a solution of CH₃I (320 mg, 2.2 mmol) in 5 mL of THF during 30 min. After allowing the reaction mixture to come to room temperature, a part of THF was removed under reduced pressure. To the resulting mixture were added 50 mL of water and 50 mL of petroleum ether and the combined organic layers were washed with water and dried. After removal of solvent, the oily residue was purified by filtration through a short (5g) silica gel column (290 mg, 80%). ¹H NMR (60 MHz, CCl₄) δ 6.7-7.3 (AA'BB' system, 4H, aryl), 6.25 (m, 2H, H₃ and H₅), 4.3 (dd, 2H, H₁ and H₄), 1.9 (d, 6H, CH₃); ¹IR (NaCl, cm⁻¹) 2960, 2925, 1460, 1440, 750.

Acknowledgement: The authors are indebted to Atatürk University, Department of Chemistry for financial support of this work and Prof. Dr. Harald Günther (University of Siegen), Prof. Dr. Manfred Schlosser (University of Lausanne) and Prof. Dr. Waldemar Adam (University of Würzburg) for ¹H and ¹³C NMR spectra.

Br1	C12	1.941(12)	C4	C5	1.385(23)
Br2	C11	1.976(13)	C5	C6	1.386(21)
Br3	C9	1.892(13	C6	C7	1.387(17)
C1	C2	1.522(18)	C7	C8	1.539(18)
C1	C9	1.514(18)	C8	C11	1.551(17)
C1	C12	1.503(18)	C8	C12	1.535(17)
C2	C3	1.382(19)	C9	C10	1.267(19)
C2	C7	1.381(19)	C10	C11	1.499(19)
C3	C4	1.378(22)			
H1	C1	1.069(13)	H8	C8	1.088(13)
НЗ	C3	1.105(15)	H10	C10	1.082(12)
H4	C4	1.086(16)	H11	C11	1.062(13)
H5	C5	1.066(15)	H12	C12	1.082(13)
H6	C6	1.073(15)			

Table 1. Bond distances (A) and bond angles (o) of 8 with esd's in parentheses

C9	C1	C2	106.5(1.1)	C11	C8	C7	105 6(11)
C12	C1	C2	99.2(1.1)	C12	C8	C7	97.0(1.0)
C12	C1	C9	109.4(1.1)	C12	C8	C11	111.6(1.0)
СЗ	C2	C1	131.9(1.4)	C1	C9	Br3	116.2(1.0)
C7	C2	C1	107.6(1.2)	C10	C9	Br3	121.2(1.1)
C7	C2	СЗ	120.4(1.3)	C10	C9	C1	122.6(1.3)
C4	C3	C2	117.9(1.6)	C11	C10	C9	122.6(0.9)
C5	Ç4	СЗ	121.9(1.6)	C8	C11	Br2	112.6(0.9)
C6	C5	C4	120.5(1.4)	C10	C11	Br2	108.9(0.9)
C7	C6	C5	117.3(1.5)	C10	C11	C8	113.1(1.1)
C6	C7	C2	122.0(1.4)	C1	C12	Br1	113.7(0.9)
C8	C7	C2	109.9(1.1)	C8	C12	Br1	117.1(0.9)
C8	C7	C6	128.1(1.4)	C8	C12	C1	102.2(1.0)
H1	C1	C2	117.5(1.2)	H8	C8	C7	121.1(1.1)
H1	C1	C9	109.3(1.2)	H8	C8	C11	106.2(1.1)
H1	C1	C12	114.3(1.2)	H8	C8	C12	114.9(1.1)
H3	C3	C2	120.7(1.5)	H10	C10	C9	134.2(1.5)
НЗ	C3	C4	121.5(1.6)	H10	C10	C11	103.7(1.2)
H4	C4	C3	118.6(1.8)	H11	C11	Br2	111.0(0.9)
H4	C4	C5	119.6(1.7)	H11	C11	C8	104.0(1.1)
H5	C5	C4	117.5(1.6)	H11	C11	C10	107.2(1.2)
H5	C5	C6	122.0(1.6)	H12	C12	Br1	99.0(0.8)
H6	C6	C5	121.2(1.3)	H12	C12	C1	114.9(1.1)
H6	C6	C7	121.5(1.5)	H12	C12	C8	110.5(1.0)

Table 2. Bond distances (A) and bond angles (o) of 21 with esd's in parentheses

Br1		C10	1.967(9)	C4		C5	1.363(16)
Br2		C9	1.944(8)	C5		C6	1.404(14)
Br3		C11	1.866(9)	C6		C7	1.376(12)
C1		C2	1.520(13)	C7		C8	1.519(12)
C1		C9	1.553(12)	C8		C10	1.543(12)
C1		C11	1.555(12)	C8		C12	1.526(12)
C2		C3	1.394(2)	C9		C10	1.552(11)
C2		C7	1.405(12)	C11		C12	1.311(13)
C3		C4	1.390(15)				
C9	C1	C2	105.6(7)	C10	C8	C7	108.7(7)
C11	C1	C2	108.1(7)	C12	C8	C7	108.9(7)
C11	C1	C9	104.6(7)	C12	C8	C10	103.4(7)
C3	C2	C1	126.5(9)	C1	C9	Br2	111.2(6)
C7	C2	C1	113.4(7)	C10	C9	Br2	110.3(6)
C7	C2	C3	120.0(9)	C10	C9	C1	108.9(7)
C4	СЗ	C2	117.9(1.0)	C8	C10	Br1	110.4(6)
C5	C4	C3	122.2(9)	C9	C10	Br1	109.0(6)
C6	C5	C4	120.5(1.07	C9	C10	C8	109.9(7)
C7	C6	C5	118.3(1.0)	C1	C11	Br3	118.9(7)
C6	C7	C2	121.2(8)	C12	C11	Br3	126.0(0)
C8	C7	C2	112.1(7)	C12	C11	C1	115.0(8)
C8	C7	C6	126.7(8)	C11	C12	C8	113.7(8)
H1	C1	C2	112.6(8)	H8	C8	C7	108.5(7)
H1	C1	C9	113.6(7)	H8	C8	C10	113.8(7)

H1	C1	C11	118.(7)	H8	C8	C12	113.3(6)
НЗ	СЗ	C2	120.4(1.0)	H9	C9	Br2	108.1(6)
НЗ	C3	C4	121.7(9)	H9	C9	C1	109.2(7)
H4	C4	СЗ	118.3(1.1)	H9	C9	C10	109.2(7)
H4	C4	C5	119.5(1.1)	H10	C10	Br1	110.1(6)
H5	C5	C4	120.4(1.0)	H10	C10	C9	109.6(7)
H5	C5	C6	119.2(1.1)	H10	C10	C9	109.6(7)
H6	C6	C5	121.0(1.0)	H12	C12	C8	123.4(9)
H6	C6	C7	120.7(9)	H12	C12	C11	122.8(9)

	Table 3. Bond distance	es (A) and bond	angles (o) o	of 11	with esd's in parenth	eses
--	------------------------	-------	------------	--------------	-------	-----------------------	------

Molecule A			Molecule B		
C1	C2	1.491(14)	C13	C14	1.522(17)
C1	C9	1.564(11)	C13	C21	1.576(11)
C1	C12	1.588(12)	C13	C24	1.549(13)
C2	C3	1.448(15)	C14	C15	1.356(17)
C2	C7	1.43(14)	C14	C19	1.378(16)
C3	C4	1.294(18)	C15	C16	1.298(18)
C4	C5	1.339(24)	C16	C17	1.471(22)
C5	C6	1.405(20)	C17	C18	1.323(20)
C6	C7	1.366(15)	C18	C19	1.509(13)
C7	C8	1.558(14)	C19	C20	1.425(16)
C8	C11	1.555(15)	C20	C23	1.522(16)
C8	C12	1.500(15)	C20	C24	1.556(16)
C9	C10	1.472(13)	C21	C22	1.528(14)
C9	Br3	1.959(8)	C21	C22	2.005(11)
C10	C11	1.292(16)	C22	C23	1.323(157
C10	Br2	1.898(8)	C22	Br5	1.916(8)
C12	Br1	1.918(7)	C24	Br4	1.934(8)
Molecule A			Molecule B		
Molecule A C2 - C1 - C	9	112.6(7)	Molecule B C14 - C13 - C	21	112.2(8)
Molecule A C2 - C1 - C C2 - C1 - C	9 12	112.6(7) 96.1(7)	Molecule B C14 - C13 - C C14 - C13 - C	21 24	112.2(8) 99.7(8)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C	9 12 12	112.6(7) 96.1(7) 107.2(6)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C	21 24 24	112.2(8) 99.7(8) 105.6(7)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C	9 12 12 3	112.6(7) 96.1(7) 107.2(6) 131.8(9)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C	21 24 24 19	112.2(8) 99.7(8) 105.6(7) 106.8(1.0)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C	9 12 12 3 7	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C	21 24 24 19 19	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C7	9 12 12 3 7	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C14 - C15- C1	21 24 24 19 19	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C2 - C3 - C	9 12 12 3 7 7	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C14 - C15- C1 C15 - C16 - C	21 24 29 19 19 6 17	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C4 - C	9 12 12 3 7 7 4 5	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C14 - C15- C1 C15 - C16 - C C16 - C17 - C	21 24 29 19 19 6 17 18	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C4 - C C4 - C5 - C	9 12 12 3 7 7 4 5 6	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C14 - C15- C1 C15 - C16 - C C16 - C17 - C C17 - C18 - C	21 24 19 19 6 17 18 19	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C4 - C C4 - C5 - C C5 - C6 - C	9 12 12 3 7 7 4 5 6 7	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C14 - C15- C1 C15 - C16 - C C16 - C17 - C C17 - C18 - C C14 - C19 - C	21 24 19 19 6 17 18 19	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C4 - C C3 - C4 - C C5 - C6 - C C2 - C7 - C	9 12 12 3 7 4 5 6 7 6	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1) 122.8(9)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C14 - C15- C1 C15 - C16 - C C16 - C17 - C C17 - C18 - C C14 - C19 - C C14 - C19 - C	21 24 19 19 6 17 18 19 18 20	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1) 114.1(9)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C4 - C C3 - C4 - C C5 - C6 - C C2 - C7 - C C2 - C7 - C	9 12 12 3 7 4 5 6 7 6 8	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1) 122.8(9) 104.3 (8)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C15 - C14 - C C14 - C15- C1 C15 - C16 - C C16 - C17 - C C17 - C18 - C C14 - C19 - C C18 - C19 - C	21 24 19 19 6 17 18 19 18 20 20	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1) 114.1(9) 127.1(1.0)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C4 - C C3 - C4 - C C5 - C6 - C C2 - C7 - C C2 - C7 - C C C6 - C7 - C	9 12 12 3 7 4 5 6 7 6 8 8	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1) 122.8(9) 104.3 (8) 132.(9)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C14 - C15 - C1 C15 - C16 - C C16 - C17 - C C17 - C18 - C C14 - C19 - C C14 - C19 - C C18 - C19 - C C19 - C20 - C	21 24 19 19 6 17 18 19 18 20 20 23	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1) 114.1(9) 127.1(1.0) 109.6(9)
$\begin{array}{c} \text{Molecule A} \\ \text{C2} - \text{C1} - \text{C} \\ \text{C2} - \text{C1} - \text{C} \\ \text{C9} - \text{C1} - \text{C} \\ \text{C1} - \text{C2} - \text{C} \\ \text{C1} - \text{C2} - \text{C} \\ \text{C3} - \text{C2} - \text{C7} \\ \text{C3} - \text{C2} - \text{C7} \\ \text{C3} - \text{C4} - \text{C} \\ \text{C4} - \text{C5} - \text{C} \\ \text{C5} - \text{C6} - \text{C} \\ \text{C2} - \text{C7} - \text{C} \\ \text{C2} - \text{C7} - \text{C6} \\ \text{C6} - \text{C7} - \text{C8} - \text{C7} \\ \end{array}$	9 12 12 3 7 4 5 6 7 6 8 8 11	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1) 122.8(9) 104.3 (8) 132.(9) 103.5(9)	Molecule B C14 - C13 - C C14 - C13 - C C21 - C13 - C C13 - C14 - C C15 - C14 - C C15 - C14 - C C14 - C15 - C1 C15 - C16 - C C16 - C17 - C C17 - C18 - C C14 - C19 - C C14 - C19 - C C18 - C19 - C C19 - C20 - C	21 24 19 19 16 17 18 19 18 20 20 23 23	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1) 114.1(9) 127.1(1.0) 109.6(9) 98.3(9)
$\begin{array}{c} \text{Molecule A} \\ \text{C2} - \text{C1} - \text{C} \\ \text{C2} - \text{C1} - \text{C} \\ \text{C9} - \text{C1} - \text{C} \\ \text{C1} - \text{C2} - \text{C} \\ \text{C1} - \text{C2} - \text{C} \\ \text{C3} - \text{C2} - \text{C7} \\ \text{C3} - \text{C4} - \text{C} \\ \text{C4} - \text{C5} - \text{C} \\ \text{C5} - \text{C6} - \text{C} \\ \text{C2} - \text{C7} - \text{C} \\ \text{C2} - \text{C7} - \text{C} \\ \text{C6} - \text{C7} - \text{C8} \\ \text{C7} - \text{C8} - \text{C} \\ \end{array}$	9 12 12 3 7 4 5 6 7 6 8 8 11 12	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1) 122.8(9) 104.3 (8) 132.(9) 103.5(9) 101.2(8)	$\begin{array}{c} \text{Molecule B} \\ \text{C14} - \text{C13} - \text{C} \\ \text{C14} - \text{C13} - \text{C} \\ \text{C21} - \text{C13} - \text{C} \\ \text{C13} - \text{C14} - \text{C} \\ \text{C15} - \text{C14} - \text{C} \\ \text{C15} - \text{C14} - \text{C} \\ \text{C15} - \text{C16} - \text{C} \\ \text{C16} - \text{C17} - \text{C} \\ \text{C17} - \text{C18} - \text{C} \\ \text{C14} - \text{C19} - \text{C} \\ \text{C14} - \text{C19} - \text{C} \\ \text{C18} - \text{C19} - \text{C} \\ \text{C19} - \text{C20} - \text{C} \\ \text{C19} - \text{C20} - \text{C} \\ \text{C23} - \text{C20} - \text{C} \\ \end{array}$	21 24 19 19 6 17 18 19 18 20 20 23 24 24	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1) 114.1(9) 127.1(1.0) 109.6(9) 98.3(9) 104.7(7)
Molecule A C2 - C1 - C C2 - C1 - C C9 - C1 - C C1 - C2 - C C1 - C2 - C C3 - C2 - C C3 - C2 - C C3 - C4 - C C3 - C4 - C C5 - C6 - C C2 - C7 - C C2 - C7 - C C6 - C7 - C C7 - C8 - C C11 - C8 - C	9 12 12 3 7 4 5 6 7 6 8 8 11 12 C12	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1) 122.8(9) 104.3 (8) 132.(9) 103.5(9) 101.2(8) 108.8(8)	$\begin{array}{c} \text{Molecule B} \\ \text{C14} - \text{C13} - \text{C} \\ \text{C14} - \text{C13} - \text{C} \\ \text{C21} - \text{C13} - \text{C} \\ \text{C13} - \text{C14} - \text{C} \\ \text{C15} - \text{C14} - \text{C} \\ \text{C15} - \text{C14} - \text{C} \\ \text{C15} - \text{C16} - \text{C} \\ \text{C16} - \text{C17} - \text{C} \\ \text{C17} - \text{C18} - \text{C} \\ \text{C14} - \text{C19} - \text{C} \\ \text{C14} - \text{C19} - \text{C} \\ \text{C18} - \text{C19} - \text{C} \\ \text{C19} - \text{C20} - \text{C} \\ \text{C19} - \text{C20} - \text{C} \\ \text{C23} - \text{C20} - \text{C} \\ \text{C13} - \text{C21} - \text{C} \\ \end{array}$	21 24 19 19 16 17 18 19 18 20 20 23 24 24 22	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1) 114.1(9) 127.1(1.0) 109.6(9) 98.3(9) 104.7(7) 111.0(8)
	9 12 12 3 7 4 5 6 7 6 8 8 11 12 C12 10	112.6(7) 96.1(7) 107.2(6) 131.8(9) 113.2(8) 114.7(9) 119.7(1.1) 125.7(1.2) 119.2(1.1) 117.8(1.1) 122.8(9) 104.3 (8) 132.(9) 103.5(9) 101.2(8) 108.8(8) 112.4(7)	$\begin{array}{c} \text{Molecule B} \\ \text{C14} - \text{C13} - \text{C} \\ \text{C14} - \text{C13} - \text{C} \\ \text{C21} - \text{C13} - \text{C} \\ \text{C13} - \text{C14} - \text{C} \\ \text{C15} - \text{C14} - \text{C} \\ \text{C15} - \text{C14} - \text{C} \\ \text{C15} - \text{C16} - \text{C} \\ \text{C16} - \text{C17} - \text{C} \\ \text{C17} - \text{C18} - \text{C} \\ \text{C14} - \text{C19} - \text{C} \\ \text{C14} - \text{C19} - \text{C} \\ \text{C18} - \text{C19} - \text{C} \\ \text{C19} - \text{C20} - \text{C} \\ \text{C19} - \text{C20} - \text{C} \\ \text{C23} - \text{C20} - \text{C} \\ \text{C13} - \text{C21} - \text{C} \\ \text{C21} - \text{C21} - \text{C} \\ \text{C13} - \text{C13} - \text{C1} \\ \text{C13} - \text{C1} - \text{C} \\ \text{C13} - \text{C1} - \text{C} \\ \text{C13} - \text{C1} \\ \text{C13} - \text{C1} - \text{C1} \\ \text{C1} \\ C1$	21 24 19 19 16 17 18 19 18 20 23 24 24 22 24 22	112.2(8) 99.7(8) 105.6(7) 106.8(1.0) 121.2(1.0) 121.6(1.1) 120.2(1.0) 121.5(9) 116.0(1.1) 118.7(1.1) 114.1(9) 127.1(1.0) 109.6(9) 98.3(9) 104.7(7) 111.0(8) 107.5(6)

C10 - C9 - Br3	115.5(8)	C21 - C22 - C23	122.5(8)
C9 - C10 - Br2	113.2(7)	C21 - C22 - Br5	113.9(7)
C11 - C10 - Br2	121.2(7)	C23 - C22 - Br5	121.9(7)
C8 - C11 - C10	120.1(8)	C20 - C23 - C22	121.8(8)
C1 - C12 - Br1	102.6(8)	C13 - C24 - C20	101.7(7)
C1 - C12 - Br1	115.2(6)	C13 - C24 - Br4	115.5(6)
C8 - C12 - Br1	116.5(6)	C20 - C24 - Br4	118.5(7)
H1- C1 - C2	115.0(7)	H13 - C13 - C14	113.1(8)
H1 - C1 - C9	105.7	H13 -C13 - C21	108.0(8)
H1 - C1 - C12	120.1(8)	H13 - C13 - C24	118.8(9)
H3 - C3 - C4	120.0(1.1)	H15 - C15 - C14	119.2(1.0)
H3 - C3 - C2	120.3(1.1)	H15 - C15 - C16	119.1(9)
H4 - C4 - C3	117.1(1.3)	H16 - C16 - C15	120.0(1.1)
H4 - C4 - C5	117.2(1.1)	H16 - C16 - C17	119.8(1.1)
H5 - C5 - C4	120.2(1.2)	H17 - C17 - C16	119.3(1.2)
H5 - C5 - C6	120.6(1.5)	H17 - C17 - C18	119.2(1.5)
H6 - C6 - C5	121.2(1.1)	H18 - C18 - C17	121.9(9)
H6 - C6 - C7	121.0(1.1)	H18 - C18 - C19	122.0(1.1)
H8 - C8 - C7	118.0(9)	H20 - C20 - C19	115.0(9)
H8 - C8 - C7	118.0(9)	H20 - C20 - C19	115.0(9)
H8 - C8 - CC11	111.1(8)	H20 - C20 - C23	109.4(1.0)
H8 - C8 - C12	113.3(1.0)	H20 - C20 - C24	118.9(9)
H9 - C9 - C1	109.3(7)	H21 - C21 - C13	1355.7(9)
H9 - C9 - C10	138.4(8)	H21 - C21 - C22	111.3(7)
H9 - C9 - Br3	49.5(9)	H21 - C21 - Br6	45.8(4)
H11 - C11 - C8	137.5(9)	H23 - C23- C20	137.5 (9)
H11- C11 - C10	97.7(9)	H23 - C23 - C22	97.6(8)
H12 - C12 - C1	113.2(7)	H24 - C24 - C13	114.2(8)
H12 - C12 - C8	111.9(8)	H24 - C24- C20	116(8)
H12 - C12 -Br1	98. (5)	H24 - C24 - Br4	95.9 (5)

Compound	00	11	21
Formula	$\begin{bmatrix} c_{1,2}H_{g}Br_{3} \end{bmatrix}$	$C_{1,2}H_{9}BT_{3}$	$c_{12}H_9Br_3$
Crystal shape	Rod-shaped	Rod-shaped	Prismatic
Number and range of ref-	25 reflections with	25 reflections with	25 reflections with
lections used for measuring lattice parameters	$\Big 28^{\circ} < 2\theta < 42^{\circ}$	$20^{\circ} < \theta < 44^{\circ}$	$30^{\circ} < 2\theta < 40^{\circ}$
Range of h, k and l	0 h 36, 0 k 12	-1 h 12, -11 k 11	0 h 9, 0 k 11
	0 1 11	-18 1 18	
Number or reflections measured	2240	5734	2167
Number of unique refl.	1480	4711	1295
Number of unobserved refl.	265	331	0
Criterion for recognizing			
unobserved reflections	$I < 3\sigma(I)$	I < 30(I)	I < 30(I)
Method used to solve			
structure	Direct method	Direct method	Patterson method
Use of F or F^2 magnit. in leastsquares ref.	Ē.	Ŀı	Ŀ.
Parameters refined	136	271	136
Values or R, R, wR(int)	0.052, 0.052, 0.00	0.055	0.043, 0.043, 0.048
Final residual electron density for max. and min. peaks	±2.09 and -2.09	±2.08 and -0.70	±0.98 and -1.36
Source of atomic scattering factors	International tables for X-r	ay Crystallography 1974.	

Table 4. Experimental data and structure refinement parameters. 12

REFERENCES AND NOTES

- (1) Hixon, S. S.; Mariano, P.S.; Zimmerman, H. E. Chem. Rev. 1973, 73, 531.
- (2) a) Hemetsberger, H.; Nobbe, M. Tetrahedron, 1988, 44, 67. b) Paquette, L. A.; Burke, L. D. J. Am. Chem. Soc. 1987, 52, 2674. c) Paquette, L. A.; Varadarajan, L. A.; Burke, L. D. J. Am. Chem. Soc. 1986, 108, 8032. d) Paquette, L. A. J. Am. Chem. Soc. 1984, 106, 6702. e) Paquette, L. A.; Bay, B.; Ku, A. Y.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1982, 47, 422. f) Bender, C. D, Bengston, D. L.; Dolman, D.; Herle, C. E. L.; O'Shea, S. F. Can. J. Chem. 1982, 60, g) Paquette, L. A.; Ku, A. Y.; Santiago, M. D.; Rozeboom, M. D.; Houk, K. N. J. Am. Chem. Soc. 1979, 101. 5972. h) Bender, C. O.; O'Shea, S. F. Can. J. Chem. Soc. 1979, 101. 5972. h) Bender, C. O.; O'Shea, S. F. Can. J. Chem. 1978, 56, 3027. j) Bender, C. O.; King-Brown, E. H. J. Chem. Soc. Chem. Commun. 1976, 878. k) Bender, C. O.; Shugarman, S. S. J. Chem. Soc. Chem. Commun. 1974, 934. l) Bender, C. O.; Burgess, H. D. Can. J. Chem. 1973, 51, 3486.
- a) Balcı, M.; Çakmak, O.; Harmandar, M. Tetrahedron Lett. 1985, 26, 5469. b) Harmandar, M.; Balcı, M. Tetrahedron Lett. 1985, 26, 5465. c) Ergin, Ö.; Harmandar, M.; Balcı, M. Acta Cryst. 1987, C43, 1621.
- 4) Çakmak, O.; Balcı, M. J. Org. Chem. 1989, 54, 181.
- For preliminary publication of this work see: a) Çakmak, O.; Hökelek, T.; Büyükgüngör, O.; Balcı, M. Tetrahedron Lett. 1990, 31, 2345. b) Çakmak, O.;, Balcı, M. Tetrahedron Lett. 1990, 31, 2349.
- 6) a) Karplus, M. J. Chem. Phys. 1959, 30, 11. b) Karplus, M. J. Am. Chem. Soc. 1983, 85, 2870.
- 7) a) Cristol, S. J.; Mohring, J. L.; Plorde, D. R. J. Org. Chem. 1965, 30, 1956. b) Katritzky, A. R.; Wallis, B. Chem. Ind. (London) 1964, 2025.
- 8) Hökelek, T.; Çakmak, O.; Balcı, M. Acta Cryst. 1991, C47, 000.
- a) Smith, W. B. J. Org. Chem. 1985, 50, 5731. b) Smith, W. B.; Saint C.; Johnson, L. J. Org. Chem. 1984, 49, 3771.
- 10) Çakmak, O.; Taşkesenligil, Y.; Balcı, M. J. Org. Chem. 1991, 56, 3442.
- 11) Differentiation between the structures 23 and 24 was made on the basis of the chemical reactions. 23 was submitted to bromination reaction. X-ray analysis of the formed pentabromide has revealed the exact structure of this isomer. M. Balcı, O. Çakmak, T. Hökelek, to be published.
- 12) Computer programs used: a) Davies, K. SNOOPI, 1983 Program for drawing crystal and molecular diagrams. Chemical Crystallography Laboratory, University of Oxford, England. b) Johnson, C. K. ORTEP II. Report ORNL-5138. 1976, Oak Ridge National Laboratory, Tennessee, USA. c) Sheldrick, G. M. 1986, SHELXS86, Program for the Solution of Crystal Structures. University of Göttingen, Germany. d) Watkin, D. J.; Carruthers, J. R.; Betteridge, D. W. 1985, CRYSTALS, Program for Crystal Structure Solution. Chemical Crystallography Laboratory, University of Oxford, England.